

django-trawler

Trawler is a django app designed to help audit a group of people or organization
in terms of phishing awareness.

When used as directed, you can launch your own phaux-phishing campaign and track
the members of your organization that actually follow the link or load the
images (either by default or by choice depending on how their mail client is
configured).

This software was largely inspired by a presentation given by
Lance Spitzner [http://www.securingthehuman.org/]
in which he described his approach to phishing awareness.

The source code is available at
https://bitbucket.org/onelson/django-trawler under the MIT license.

It is currently released in an alpha state, which is to say it’s basically
functional but subject to change as issues are reported.
If you have any issues, or feature requests, please post
them to the issue tracker [https://bitbucket.org/onelson/django-trawler/issues?status=new&status=open].

Contents

	Getting Started
	Installation

	Configuration

	User Guide
	What is this for?

	How does it work?

	Creating a Campaign

	Writing your Message

	Monitoring the Campaign

Getting Started

Installation

If you’re familiar with django apps, this process will be fairly natural.
Install using your choice of pip or easy_install:

$ pip install django-trawler

or ...

$ easy_install django-trawler

Configuration

In your project settings module:

	Add trawler and django.contrib.admin to INSTALLED_APPS.

	Ensure your mail settings are appropriate (the app needs to send mail).

	Ensure you set the domain for your server (django Sites framework) so
admin links point to the right place.

	Include trawler.urls in your urlconf.

	MAKE ABSOLUTELY SURE DEBUG = False before launching a campaign (or your
targets will see nice django 404 pages).

User Guide

What is this for?

Just like actual phishers [1], we are looking to perform a bit of
recon on each of the targets of our campaign. Using this application we can
learn:

Is the person is likely to click on links, or display images, in
suspicious [2] emails.

An actual phisher might go further to redirect the user to a web site that
looks like some other web site (in an effort to log their login attempts and
learn the person’s credentials) but this is where we stop.

How does it work?

In order to run a successful campaign we need to compose an email with at least
one way of pinging back to our application embedded in it.

Pinging our application is handled by making a HTTP request, either through the
click of a link, or the requesting of an img src. The actual urls are
dependent on how your application is deployed, but given trawler is
running on http://localhost:8000:

	link url: http://localhost:8000{{ target.link_uri }}

	image url: http://localhost:8000{{ target.img_uri }}

The above urls can be followed by any valid url parts, for example we can write

http://localhost:8000{{ target.link_uri }}awesome/cgi-bin/application.pl

and it would be the same as writing

http://localhost:8000{{ target.link_uri }}forum/index.php

Each of these urls types (image and link) behave slightly differently on the
application end. When a user clicks on the link, in the email, we record a
“hit” for the user and the application returns an HTTP 404 status (page not
found).

If a user opts to display the images in the (or perhaps their mail client is
configured to load images automatically), we record that too. If an image has
been uploaded for the campaign, then the application sends the image data to the
client, otherwise it returns an HTTP 404 status (thus displaying a “broken”
image).

Note

The {{ target.link_uri }} and {{ target.img_uri }} in the
urls should be entered literally. Trawler will substitute the tokens
for a uri that is tailored both to how you’ve setup your deployment
(app prefixes, etc) and the specific target each time the message is
mailed out.

The domain/ip before the uri and the content after are totally up to
you. You might want to register a look-a-like domain and point it at
your server specifically for running your campaign, depending on the
level of deception you’re going for.

Creating a Campaign

For the time being, the way we interact with Trawler is through the django admin
site. Visit http://localhost:8000/admin/ (or whatever is appropriate for
you) to login. Once logged in, click through to the trawler campaign create page
(add a campaign).

If you don’t see trawler listed in the admin site, verify that you added
trawler to your list of INSTALLED_APPS, and remembered to syncdb
afterwards.

[image: _images/edit_campaign.png]
The image above shows a campaign I’ve directed at myself.

I’ve specified a both text/plain and text/html content for the email
body so that I can include and <a> tags. Using html markup makes
it easier for us to “hide” true nature of the content we are linking to
(just like a rickroll [3]). The plain text version
simply includes a url to my fictitious store-front.

Note

I’ve customized the link url to appear to be a “harmless”, non-dynamic
html document. Similarly, I’ve made the image appear to be a store
logo by “naming” the file as such (even though it’s not).

After I’ve saved this campaigned (with myself as a target), I return to the
campaign list page, check the box next to my campaign to select it, then
choose test or launch from the dropdown menu above, finally clicking
the go button to actually send out the mail.

Here’s the rundown on what these 2 actions do:

	Launch

	Send the campaign email to all targets associated with the campaign.
There is no confirmation for this. Furthermore, there are no take-backs.
Do not launch until you are sure everything is in order.

	Test

	Sends the email to you (the current logged in user), but does not
register links and images viewed as normal. Use this to verify your links
are correct (or to see how your spam filter reacts to the message).

Writing your Message

Ther are some things to consider as you compose your message.

Plain and HTML content types

Many mail clients support the rendering of html content however the
Plain is required.

The message template context

Both the plain and html message fields are used as django templates, with
context substitutions being made per Target right before the email is sent
out to them.

The template context provieds access to the target instance via the variable
{{ target }}.

The target object provides a number of helpful properties:

	{{ target.email }}:

	The email address that the target is going to recieve the email at.

	{{ target.img_uri }}:

	The target-specific image src (relative to site root).

	{{ target.link_uri }}:

	The target-specific link href (relative to site root)

	{{ target.extra }}:

	Each target has an extra_context field. Given a
comma seperated key=val list in this field, that data will be avialble
to you via {{ target.extra }}.

For example, if the extra context for a target had

first_name=John, last_name=Doe

you could include

Hello {{ target.extra.first_name }} {{ target.extra.last_name }}

in your message, which would become

Hello John Doe

when the email was sent out.

If all your targets in this campaign also had these
extras specified correctly, you could send a highly personalized email
to each of your targets.

This is really only meant for simple values. If trawler is not able
to cleanly and simply parse out the x=1, y=2, z=3 in this field,
values may be skipped. By default (in django templates) accessing
values that are not there will result in nothing being printed. Just
be aware that these values are being silently dropped - there will be
no notification issued by the system.

The main thing to take away is that this block of text is just a django
template. While the context is limited, you should be able to use any
of the default template tags and filters that ship with django.

For more information on the django template system, see the
django docs [https://docs.djangoproject.com].

Monitoring the Campaign

Visiting the campaign edit page, you’ll see a button on the top right labeled
view on site. Follow that link and you’ll see the campaign results page,
which for me looks a bit like this:

[image: _images/campaign_detail_good.png]
What’s that? I have a new email in my inbox... it’s from someone I’ve never
been in touch with before, but it sounds like they are willing to give me a good
deal on watches.

[image: _images/email_no_images.png]
Going back to the campaign results, there’s been no change. When I click the
link, or load the images however...

[image: _images/email_with_images.png]
the updated value will change and False will become True.

[image: _images/campaign_detail_img_and_link_viewed.png]
That’s about all there is to it.

Footnotes

	[1]	Not sure if this is actually a word. Read: people that run
phishing scams.

	[2]	The level of suspiciousness is entirely up to you.

	[3]	See: http://en.wikipedia.org/wiki/Rickrolling

Index

 _static/minus.png

_static/comment-close.png

_static/up.png

_static/file.png

_static/plus.png

_static/down-pressed.png

_static/ajax-loader.gif

_static/comment-bright.png

_static/up-pressed.png

_images/campaign_detail_img_and_link_viewed.png
who

link followed

image viewed

updated

onelson@gmail.com

True

True

April 22,2011, 9:01 am.

_images/email_with_images.png
98% Off Rowlex [x mbax | x

Watches@yahoo.com to 1 show details 9:53 AM (5 minutes ago) | 4 Reply

before stock runs out!!!

S Repy = Foward

_images/email_no_images.png
98% Off Rowlex [[x mwox |

Watches@yahoo.com to 1 show details 9:53 AM (3 minutes ago) | 4 Reply
Images are not displayed.

Display images below -

‘Always display images from watches@yahoo.com

These watches are garunteed genuin

Buy now before stock runs out!!!

G Repy = Foward

_images/edit_campaign.png
Change campaign

Title: My first phishing trp

Sender watches @yahoo.com

Email html: <strong style="color-orange;">These waiches are garunteed genuine!li<Jstrong>

<p style="Tont.size: 20px;"><a href="htip:/localhost 8000 awler/{upk}store.iml” style="colorreditext-
decoration:bik;">Buy nows/a> before stock runs oul<lp>

Img: ‘Currently: uploads/2011/04/22/Cat_Burger pg) Clear

[[Choose Fie | o e crosen

Chang:

nav.xhtml

 Table of Contents

 		django-trawler

 		Getting Started

 		Installation

 		Configuration

 		User Guide

 		What is this for?

 		How does it work?

 		Creating a Campaign

 		Writing your Message

 		Plain and HTML content types

 		The message template context

 		Monitoring the Campaign

_images/campaign_detail_good.png
‘who

link followed

image viewed

updated

onelson@gmail.com

False

False

April 22, 2011, 8:46 am.

_static/comment.png

_static/down.png

